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Abstract

We systematically investigate the e�ect of blockage sites in a cellular automa-

ton model for tra�c 
ow. Di�erent scheduling schemes for the blockage sites

are considered. None of them returns a linear relationship between the frac-

tion of \green" time and the throughput. We use this information for a fast

implementation of a simulation of tra�c in Dallas.

I. INTRODUCTION

In today's crowded world, space and money to build transportation systems which can
ful�ll all demand is often not available, or it is not desired to spend it on transportation
system infrastructure. The result is congestion: from congested urban centers to congested
inner-city corridors to congested railways and congested airports. In consequence, some
\forecasting" tool would be desirable. Unfortunately, congestion has the side e�ect that
causal relations become much more spread both spatially and temporally [1]. If a road is
crowded, a person may attempt a di�erent route or a di�erent mode (spatial spreading), or
she may attempt the trip at a di�erent time (temporal spreading) or even totally drop the
trip. The result is that planning tools need to consider a much wider spatial and temporal
context than ever before. Conceptually this means that for such problems the method
needs to be \activity based", i.e. one needs to consider the whole process how people plan
transportation in a daily or better weekly context (see, e.g., [2]).

Another e�ect of being in the congested regime is that one needs to worry a lot more than
before about having a dynamically correct representation of the transportation system: For
example, a peak-period spreading of tra�c will not show up if one models tra�c averaged
over 24 hours, as many traditional tools do. Thus, we suddenly are faced with a problem
where we need to introduce more dynamical correctness into the modeling while at the same
time considering much wider temporal and spatial scales than before.

It is fairly obvious that, when faced with a dynamical problem, a \microscopic" ap-
proach, i.e. starting with a description of the smallest particles, is in terms of methodology
the cleanest one. In transportation science, this currently means to consider individual
travelers rather than, say, aggregated link 
ows. For example, it is di�cult to include in-
dividual route choice behavior into a simulation that does not resolve individual drivers.
There is also some agreement that the currently most straightforward method to deal with
microscopic approaches in complicated real-world contexts is computer simulation, as op-
posed to analytical techniques. Now, when faced with a compute-intense problem, such as
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systematic scenario evaluations (see, e.g., [3{5]), or the simulation of the whole national
transportation system [6], a very detailed and realistic microsimulation (see, e.g., [7,8]) may
be computationally too slow, or too data-intensive to run.

Alternatives here are simpli�ed models which still capture the essentials of the dynamics
at the transition to the congested regime. Since tra�c in general is dominated by the
bottlenecks in the system, these simulations concentrate on exactly these bottlenecks. The
most important bottlenecks in urban systems are tra�c lights. The natural outcome of
this way of thinking are queuing-type models [9{11]. For vehicles that enter the link, one
calculates when they could arrive at the end of the link. When that time is reached in the
simulation, they are added to a queue at the end of the link. They leave the queue once they
have advanced to its beginning. The queue may have a limited service rate, which models
capacity restrictions.

This paper approaches this problem from a slightly di�erent angle. We use a very simple
single-lane microsimulation to capture at least some of the dynamics that is going on on
the link itself (see also [12]). This paper will provide a systematic approach to such a
model. Sec. 2 will describe our model, the way capacity restrictions are modeled, what their
behavior is, and what that means for the relation between the simulation and reality. In
fact, capacity restrictions are simply modeled by \impurity sites" or temporary \blockages"
(e.g. [13]). Sec. 3 discusses an implementation and some results for a Dallas study. This is
followed by a short discussion, highlighting the di�erences between our approach and other
\queuing-type" approaches (Sec. 4), and a summary.

II. A SIMPLIFIED APPROACH

We present a simple simulation model of city tra�c, using a combination of stochastic
cellular automata (CA) and stochastic transitions between streets. To represent the city
network, we use the usual de�nition (e.g. [14]) for links and nodes: a link is a directed
street segment, such as a bi-directional road divided into two links, whereas a node is an
intersection; a link can also be de�ned by an input node and an output node. Vehicles are
moved on a simple single-lane CA link, and are transferred from link to link following a
simple stochastic law based on the link's capacity.

A. Links

Links have di�erent characteristics including length, speed-limit, number of lanes, max-
imum capacity, etc. The length is necessary to adjust the number of sites needed for the
discrete approach of the CA. We use the standard reference of 7.5 meters for the length of
one site [14,8,15]. Each site can be empty, or occupied by a vehicle with an integer velocity
v 2 f0 : : : vmaxg. vmax = 5 gives good agreement with �eld measurements.

Since each link is considered as a one-lane segment, vehicles are moved using the rules
of Refs. [16,15]. Summarizing the one-lane CA model, the variable gap gives the number
of unoccupied sites in front of a vehicle. pnoise is the probability with which the vehicle is
slowed down by one unit, and rand is a random number between zero and one. One iteration
consists of the following three sequential steps which are applied in parallel to all cars:
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1. Acceleration of free vehicles: IF (v < vmax) THEN v = v + 1

2. Slowing down due to other cars: IF (v > gap) THEN v = gap

3. Stochastic driver behavior: IF (v > 0) AND ( rand < pnoise) THEN v = v � 1

B. Stochastic transitions

We introduce various stochastic models to di�erentiate the existing links within a city,
from high capacity segments such as freeways to low capacity segments such as arterials. If
we consider only one-lane links, the stochastic transition is introduced to control the output

ow of a link. A high capacity link will produce a high output 
ow, while a low capacity
link will produce a low output 
ow.

1. Random tra�c light

Let us consider the experiment in �g[1], consisting of two consecutive links separated by
a transition probability ptrans. The �rst site of link 1 operates as a generator of vehicles,
where one vehicle is introduced per n iteration(s). The 
ow measured at the end of the
second link versus the number of iterations is shown in �g[2]. The transition probability is
set to 0:5 in this example. The 
ow measured at iteration t is the number of vehicles that
left the second link until that moment, divided by t. As a result, the unity of the 
ow is
vehicle per iteration. Commonly, one iteration is taken to correspond to one second of real
time [15,17]; a 
ow of one vehicle per iteration would thus correspond to one vehicle per
second, or 3600 vehicles per hour.1

We introduce one vehicle every three iterations at the �rst site of the �rst link with
maximum velocity 5. This is enough to assure that the �rst link will reach a 
ow of around
0.33 vehicles per iteration (1200 veh/h) for a pnoise of 0.5, which is close to the maximum
throughput of such a link in the CA implementation [15]. If the �rst site is not empty at the
introducing time step, we do not add a vehicle. The vehicle's velocities are updated by the
one-lane CA model before reaching the intersection. If the vehicle is allowed to go through
the intersection by the CA forward rule, we check the transition probability.

If the generated random number is lower than the probability ptrans, the vehicle keeps
its velocity and reaches the second link. In contrast, if the random number is greater than
ptrans, we place a virtual car in the �rst site of the second link in order to force the vehicle to

1This paper will concentrate on the 
ow variable alone, making the following somewhat less

important. { The argument for the scaling of the CA is as follows [17]: If every site in the CA is

occupied, this should correspond to the jam density, leading to a cell size of approx. 7.5 meters.

Fundamental diagrams (i.e. plotting 
ow vs. density) should display maximum 
ow at densities

between 15 and 30 veh/km (depending on the country and on the vehicle 
eet mix); this is obtained

by using a maximum velocity vmax of 4 or 5 cells/iteration in the CA. 5 cells/iteration should then

correspond to fairly fast vehicles, say 135 km/h. This leads to a time step of one second.
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brake and stop at the intersection. When the light \turns green", this virtual car is removed
again. Technically: If a car reaches the last �ve sites of a link, it produces a random number.
We introduce the simple algorithm:

1. Transition check:
IF (rand < ptrans) THEN normal CA-update ELSE gap=distance from the vehicle to
the intersection

This situation is in principle well understood. The \impurity site" will create a reduced 
ow
that can pass that site, and since 
ow needs to be conserved along the link, this sets the
maximum throughput for the link [13,18{21]. Yet, in the context of the stochastic tra�c
cellular automaton as used here, we are only aware of Ref. [22]. That paper implements
a hindrance by setting the maximum velocity of a certain number, h, of consecutive cells
to INT (vmax=2), where INT (:) takes the integer value. Di�erent throughputs can then be
obtained by using di�erent values for h. That mechanism seems more suited for modeling
capacity reduction in construction sites than for modeling capacity reduction by tra�c
lights. For example, speed and capacity are in principle unrelated, so that it does not seem
a good idea to model capacity via arti�cial speed limits. Also, since h is discrete, capacity
in Ref. [22] can only be changed in coarse-grained steps, a feature which is undesirable for
our purposes.

Figs [3-5] demonstrate the formation of tra�c jams spreading to the beginning of the
link, caused by braking of vehicles. The beginning of the second link can again be considered
as a generator of vehicles. Nevertheless, the input 
ow to that second link and ptrans are not
proportional.

To illustrate this comment, we vary the transition probabilities from zero to one. The
average 
ow obtained for each experiment is presented in �g[6]. For each data point, the 
ow
is averaged in the time period (15000,30000), see �g[2]. The intersection does not function
as a perfect generator of service rate ptrans. If a vehicle leaves the last site of the �rst link,
this vehicle is not automatically replaced, due to the stochastic third step included in the
one-lane CA model. The plot of Fig. 6 can be divided into three di�erent parts:

(i) A high transition probability (ptrans between 0.8 and 1.0) gives linear results with
the output 
ow. In this scenario, vehicles do not stop often at the intersection, thus the
intersection does not work like a stop and start point. See �g[4].

(ii) A low transition probability (between 0 and 0.4) gives results that can be explained
by a simple hypothesis. Most of the cars stop at the intersection and form a compact
tra�c jam, as shown in �g[5]. There are no important spaces in this queue. Assuming
that the second last site of the �rst link is always crowded, how many iterations does a
vehicle need to go through the intersection? If a vehicle is on the last site of link 1, the
vehicle needs 1=pnoise iterations on average to advance, and then multiplied by 1=ptrans to
go through the intersection. Viewed from the perspective of the next following vehicle, that
one needs to wait 1=pnoise � 1=ptrans steps until the vehicle ahead is gone, and then another
1=pnoise steps to move itself to arrive at the last site. As a result the average number of
iterations for a vehicle to advance from the second last site of link 1 to the intersection is
1=pnoise + 1=(pnoiseptrans). This could in theory be continued, but it would not necessarily
get better because one would need to include the in
uence of \holes" in the queue; or, more
technically: The approximation is only valid for ptrans ! 0, and second order corrections are
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thus negligible. In any case, the corresponding 
ow is F � pnoiseptrans=(1 + ptrans). Using
pnoise = 0:5 plus that one iteration corresponds to one second and converting everything to
hourly 
ows (i.e. multiplying by 3600), one obtains

F [veh=hour] � 1800 �
ptrans

1 + ptrans
:

The function, F , shown in �g[6] �ts well to the data measured for low values of p, while
for p � 0:4 the hypothesis is no longer valid.

(iii) Figure [3] demonstrates what happens for transition probabilities between 0.4 and
0.8 at a microscopic level. Within the queue, holes are generated by the intersection and
an analytical approach becomes more di�cult. Periodically, vehicles pass through the inter-
section without braking and stopping, which produces a higher 
ow compared to the linear
relationship illustrated in �g[6].

2. Other tra�c lights

Many experiments can be conducted using other probability distributions for the inter-
section. The model previously described operates like a random tra�c light, where the light
becomes green with the probability ptrans, which is also the fraction of the time the light
is green: fgreen = ptrans. That model can be considered to be one between two extreme
distributions, where in between the extreme cases one can encounter an in�nite number of
distributions that keep the fraction of a green light of the total time of a tra�c cycle the
same.

� The �rst distribution is a normal tra�c light. The green fraction here is straightfor-
ward: fgreen = Tgreen=(Tgreen + Tred).

� We call the second model a Dirac tra�c light. As we work with discrete systems, the
objective is to set a green light or a red light on only one time unit, equally spaced
on a cycle. The green fraction is fgreen = 1=(1 + Tred) for Tred � 1 (and Tgreen = 1 by
de�nition) or 1� 1=(1 + Tgreen) for Tgreen � 1.

All three distributions are illustrated in �g [7]. In the following, we present the same
experiments discussed above, for these two distributions.

3. Normal tra�c light

We �rst repeat the same experiment described in �g[1] with a normal tra�c light at
the intersection. The dissolution of a queue as the light turns periodically green is shown
in �g[8]. This phenomenon does not provide an easy analytical solution. For each green
fraction fgreen ranging from 0 to 1, the input 
ow of the second link is measured and is
illustrated in �g[10]. This relationship is almost linear. Even for high values of the green
fraction, vehicles still have to stop occasionally, which decreases the output 
ow. Figure[9],
when compared to the space-time diagram produced by the random tra�c light for the same
value of fgreen (�g[4]), displays a lack of 
uidity.
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4. Dirac tra�c light

The Dirac tra�c light generates the highest 
ow for a given fgreen in the experiment of
�g[1]. The space-time diagram performed with a green time fraction of fgreen = 0:5 is given
as an example. In this case, the Dirac tra�c light is successively green and red. Figure
[11] shows less compact tra�c jams at the end of the �rst link than the other space-time
diagrams for the same fraction of green time. This is still due to the vehicles that pass
through the intersection at maximum velocity without braking. The analytic explanation
for this is the fact that the parallel update of the CA tends to generate states where particles
are followed by holes, sometimes called \particle-hole attraction" [23].

The output 
ow of link 1 for any value of fgreen is much higher than the two 
ows
measured previously for the two other probability distributions. There is no linear relation
at any position on this diagram. The space-time diagrams plotted for a fgreen = 0:16 and
fgreen = 0:9 exhibit more 
uidity for the output tra�c (�g[12,13]).

III. DALLAS

A. Implementation

The normal tra�c light model is the most linear model simulated in this paper. On the
other hand, setting a tra�c light at each intersection would cost some computation time and
coding overhead. The random tra�c light presents the advantage to be checked only when
a vehicle reaches the intersection. The vehicle generates a random number which allows it
to drive trough the intersection or not.

We apply this model to the Dallas Fort-Worth area. The context is the so-called Dal-
las/Fort Worth case study [4,24] which has been done as part of the TRANSIMS (TRans-
portation ANalysis and SIMulation System) project [2]. TRANSIMS uses individual route
plans for each individual traveler. A route plan consists of a starting time, a starting loca-
tion, a list of links the vehicle intends to follow, and an ending location. A microsimulation
in the TRANSIMS project such as the one described here is thus faced with the task to
move these vehicles according to these speci�cations.

One immediately observes that one somehow has to correct for the fact that we are only
using single-lane roads, that is, our links will usually not be able to carry the prescribed
number of vehicles. We solve that problem by using a sub-sample of the plans. The size of
that sub-sample is obtained as follows:

� pnoise = 0:5 results in a maximum throughput of a link of approximately 1200 veh/h
(using ptrans = 1).

� We search for the link with the highest capacity in the area we want to simulate. In
our case, this was a four lane freeway with a capacity of 7800 veh/h.

� We thus need to sub-sample the population by a factor of 1200=7800 � 0:154, i.e. a
route plan from the full plan-set is going to be used with a probability of 0.154.
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� Links which have a lower capacity than 7800 veh/h take this fact into account by using
a value of ptrans according to Fig. 6, i.e. if the value of the road is C, then the value
C � 0:154 is used on the y{axis to �nd the correct value of ptrans on the x{axis.

A more precise calibration is more complicated than this because it also depends on the
interplay between route planning and route execution. This is out of the scope of this
paper; further publications on the subject are in preparation.

B. Simulation results

In this section, we want to give some examples how this simulation is going to be used.
These examples will be given in the context of the TRANSIMS Dallas/FortWorth case study.
That case study used as input a street network of the Dallas/Fort Worth area, containing
24662 uni-directional links and 9864 nodes, and information on all trips in this area during
a 24 hour period (approx. 10 million trips). The study focused on a busy 5 miles times
5 miles area north of downtown Dallas, and on the time between 5am and 10am. This still
involved 300 000 trips. As mentioned above, micro-simulations in the TRANSIMS project
are route-plan driven. Thus, for each of these 300 000 trips, route plans were calculated.
The fact that drivers adjust to congestion caused by other drivers was taken into account
by iterating several times between the route planning and the micro-simulation. For further
information, see Refs. [24{26].

One important speci�cation missing in the above description of the micro-simulation is
how vehicles enter and leave the simulation. TRANSIMS speci�es parking locations along
links, which represent all parking opportunities that can be reached from this link. In
order to prevent that the tra�c that leaves parking unrealistically disturbs the tra�c 
ow,
vehicles from the parking locations are only inserted if vmax sites backwards from the parking
location are empty. If the space is not free, the car is placed in a queue, waiting to enter
the simulation in one of the following iterations.

A snapshot of such a simulation with the model described in this paper can be found in
Fig[15]. The denser square area in the center represents the study area, where all streets
including local streets were represented in the data base. For this example, also the streets
outside that area were simulated. Dots denote individual vehicles. In this plot, most of the
tra�c is on the freeways, as is realistic. Also, one notes that for lower capacity road, tra�c
is mostly queued up towards the end, as one would expect from the dynamics of the model.
Yet, this is really not too unrealistic since also in reality tra�c through minor roads tends
to queue up at the ends.

The space-time diagram of �ve consecutive links is shown in �g[16]. These links are a
part of an east-west arterial located in the north of the study area. The �gure shows nicely
how queues build up at the end of links due to the capacity restrictions.

As a further example, we present the travel time versus departure time for each vehicle
(Fig. 17). This �gure shows that even such a simple simulation as the one described in this
paper can, given a realistic trip demand input, display the higher travel times during the
rush hour.

In general, a main advantage of doing a microscopic simulation (i.e. representing individ-
ual travelers) is, besides having a more realistic dynamics than many traditional approaches,
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that one can extract information that relates to individuals. For example, one can extract
accessibility information for certain areas, and one can di�erentiate this information by de-
mographic characteristics, say income or race. Accessibility deals with questions such as
how di�cult it is to reach, say, workplaces from a certain residential area, how this depends
on car ownership, etc. This becomes increasingly important in societies which undertake
signi�cant e�orts to target public money and e�ort to certain demographic groups. As an-
other example, one could �nd out from the simulation who is waiting before a bottleneck,
where these persons come from and go to, and (again) what their demographic characteris-
tics are. Building a public transit system to relieve the bottleneck will only be successful if
it is actually an alternative for the people waiting at the bottleneck.

C. Computational performance

We present a performance diagram in �g[18] where we introduce the RTR versus the
simulation time. The RTR is the ratio of the real time on the simulation time. This example
of simulation was executed on a SUN UltraSparc CPU with 250 MHz where approximately
46000 plans were simulated in the whole Dallas Fort-Worth area. The diagram �g[18] shows
a ratio of 23 in the middle of the rush period, but in average the ratio is around 28. This
clearly shows that simulations like the one described here have enough computational speed
for thorough investigations of large scale tra�c problems.

IV. DISCUSSION

In the introduction, we have argued that, because of congestion, tools with a better
representation of the dynamics of transportation systems are needed. This requirement can,
at least in principle, be ful�lled by a microscopic approach, microscopic meaning here that
each vehicle and each traveler are individually resolved. Because of the complicatedness of
the real world, analytical approaches here seem hopeless so one resorts to simulation.

On the other hand, we have also argued that, again because of congestion, one needs to
consider much larger temporal and spatial scales than ever before. This, together with the
requirement of a microscopic resolution, leads to a considerable computational challenge. In
order to meet this challenge, one possibility is to use simpli�ed models for the transportation
system dynamics that still have a microscopic resolution. Yet, these simpli�cations come at
a price because some aspects of reality will be represented with a reduced �delity. It is an
important research problem to understand the consequences of these simpli�cations. Note,
though, that this question needs to be answered on the level of the transportation planning
questions where our model is meant for, and it is far from clear how certain microscopic
simpli�cations a�ect that macroscopic behavior that is important for those questions.

As a result, it seems necessary to us to attempt to understand the advantages and prob-
lems of several di�erent simpli�ed microscopic models both from the microscopic and from
the macroscopic perspective. As discussed in the introduction, the model presented in this
paper falls into a class of models that use \simpli�ed link dynamics" [9{12]. In the most
extreme case, vehicles are moved directly to the end of the link where they wait in a queue
until they can leave the link. The waiting conditions in the queue can be, for example, time
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constraints (vehicle needs certain amount of time to traverse the link), capacity constraints
(vehicles can only leave at certain rate), and space constraints at destination links (desti-
nation links may be full). Note that in a more realistic micro-simulation, all these numbers
would be generated by the simulated dynamics instead of being included as calibration pa-
rameters. Also note that some aspects of the dynamics irrevocably get lost in the simpli�ed
models even with the best of all possible calibrations. Examples of this are the e�ects of
signal phasing, of turn pockets, or of lane changing. All of these are certainly important
on a more microscopic problem scale (such as tra�c \operations"), but it is unclear how
important they are on the scale of transportation planning. And also remember that using
a highly realistic model sometimes is not an option, for example because of computational
restrictions or data collection restrictions. In such cases, knowing the di�erent limitations
of di�erent simpli�ed models becomes crucial in order to select the best one for a given
question, or decide that the question cannot be answered with the available technology.

The model in this paper also uses capacity constraints at the end of the link (these
are the ptrans or fgreen parameters), but it attempts to capture some of the link dynamics,
such as speed limits, limited \storing" capacity on jammed links, or back-traveling \holes"
in jammed situations, directly. For this, it uses a one-lane representation of the tra�c
dynamics, which is somewhat between a simple queue representation and a realistic multi-
lane implementation. Since a one-lane representation cannot carry the full throughput of a
multi-lane road, this implies a sub-sampling of the population, i.e. only a certain fraction of
all travelers is used in the simulation.

We have stressed several times in this paper that microscopic evaluations of di�erent
models are not enough; they need to be evaluated in the context of transportation planning
questions. For the current model, such evaluations are under way, but are beyond the scope
of this paper. A paper that compares the performance of the micro-simulation presented in
this paper with two other micro-simulations and with �eld measurements in Dallas (Texas,
U.S.A.) is close to completion [26]; further work using data from Portland (Oregon, U.S.A.)
is in preparation.

V. SUMMARY

\Blockage" sites, i.e. sites which move particles or vehicles only a fraction of the time,
reduce the maximum throughput of a link of cellular automata models for tra�c 
ow and
particle movement studies. We have systematically tested the e�ects of three di�erent
blockage schemes, where one was the usual random draw, one was a regular tra�c light with
long red and green times, and one was what we called a \Dirac" tra�c light because it had
1-second spikes of one color. In general, there is no linear relation between the fraction of
green time and the throughput. The Dirac tra�c light returned the highest throughput;
the explanation for this is the \particle-hole" attraction that can be found in the type of
cellular automaton that was used. Since none of the timing schemes returns a totally linear
relation, we used the random scheme in an implementation of tra�c in Dallas. We showed
some exemplary results of this implementation.

9



VI. ACKNOWLEDGMENTS

This work has been performed at Los Alamos National Laboratory, which is operated
by the University of California for the U.S. Department of Energy under contract W-7405-
ENG-36.

10



REFERENCES

[1] K. Nagel and S. Rasmussen, in Arti�cial Life IV: Proceedings of the Fourth International
Workshop on the Synthesis and Simulation of Living Systems, edited by R. A. Brooks
and P. Maes (MIT Press, Cambridge, MA, 1994), pp. 222{235.

[2] TRANSIMS, TRansportation ANalysis and SIMulation System, Los Alamos National
Laboratory, Los Alamos, U.S.A. See http://www-transims.tsasa.lanl.gov.

[3] M. Rickert, P. Wagner, and C. Gawron, Proceedings of the 4th PASA Workshop (World
Scienti�c, Singapore, 1996).

[4] R. Beckman et al, Los Alamos Unclassi�ed Report (LA-UR) to be released, Los Alamos
National Laboratory, TSA-Division, Los Alamos NM 87545, USA (unpublished).

[5] H. Mahmassani, T. Hu, and R. Jayakrishnan, in Urban tra�c networks: Dynamic 
ow

modeling and control, edited by N. Gartner and G. Improta (Springer, Berlin/New York,
1995).

[6] D. Anson and R. Nelson, Los Alamos Unclassi�ed Report (LA-UR) 97-4389, Los Alamos
National Laboratory, Los Alamos, NM, U.S.A., http://www.lanl.gov (unpublished).

[7] R. Wiedemann, Schriftenreihe Heft 8, Institute for Transportation Science, University
of Karlsruhe, Karlsruhe, Germany (unpublished).

[8] K. Nagel et al., Los Alamos Unclassi�ed Report (LA-UR) 97-3530, Los Alamos National
Laboratory, see http://www-transims.tsasa.lanl.gov/research team/ (unpublished), also
Transportation Research Board (TRB) preprint 981332.

[9] H. Sim~ao and W. Powell, Transportation Science 26, 296 (1992).
[10] C. Gawron, in Tra�c and granular 
ow II, edited by D. Wolf and M. Schreckenberg

(Springer, Heidelberg, 1998), also Report zpr97-307, http://www.zpr.uni-koeln.de. See
Ref. [27].

[11] C. Gawron, An iterative algorithm to determine the dynamic user equilibrium in a
tra�c simulation model, in press.

[12] B. Chopard, in Tra�c and granular 
ow II, edited by D. Wolf and M. Schreckenberg
(Springer, Heidelberg, 1998). See Ref. [27].

[13] S. Janowsky and J. L. Lebowitz, Physical Review E 45, 618 (1992).
[14] M. Rickert and K. Nagel, International Journal of Modern Physics C 8, 483 (1997).
[15] K. Nagel and M. Schreckenberg, J. Phys. I France 2, 2221 (1992).
[16] K. Nagel, in Physics Computing '92, edited by R. de Groot and J. Nadrchal (World

Scienti�c, Singapore, 1993), p. 419.
[17] C. Barrett et al., Los Alamos Unclassi�ed Report (LA-UR) 95-2658, Los Alamos Na-

tional Laboratory, Los Alamos, NM, U.S.A., http://www.lanl.gov (unpublished).
[18] S. Yukawa, M. Kikuchi, and S. Tadaki, J. Phys. Soc. Japan 63(10), 3609 (1994).
[19] Z. Csah�ok and T. Vicsek, J. Physics A: Mathematics and General 27, L591 (1994).
[20] L. Vilar and A. de Souza, Physica A 211(1), 84 (1994).
[21] K. H. Chung and P. M. Hui, J. Phys. Soc. Japan 63(12), 4338 (1994).
[22] H. Emmerich and E. Rank, Physica A 216(4), 435 (1995).
[23] M. Schreckenberg, A. Schadschneider, K. Nagel, and N. Ito, Phys. Rev. E 51, 2939

(1995).
[24] K. Nagel and C. Barrett, International Journal of Modern Physics C 8, 505 (1997).
[25] M. Rickert et al, in preparation.
[26] K. Nagel et al, in preparation.

11



[27] Tra�c and granular 
ow II, edited by D. Wolf and M. Schreckenberg (Springer, Hei-
delberg, 1998).

12



FIGURES

FIG. 1. Schema of the experiment
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FIG. 2. Flow versus Time for a transition probability, ptrans, of 0.5
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FIG. 3. Space-Time diagram for a transition probability, ptrans, of 0.5
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FIG. 4. Space time diagram for ptrans = 0:9
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FIG. 5. Space time diagram for ptrans = 0:2
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FIG. 6. Flow versus transition probability, ptrans
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FIG. 7. Di�erent ways to distribute green times
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FIG. 8. Space-time diagram normal tra�c light, fgreen = 0:5
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FIG. 9. Space-time diagram normal tra�c light, fgreen = 0:9
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FIG. 10. Flow versus fraction of green time, fgreen, for normal tra�c light
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FIG. 11. Space-time diagram Dirac tra�c light, fgreen = 0:5
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FIG. 12. Space-time diagram Dirac tra�c light, fgreen = 0:16
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FIG. 13. Space-time diagram Dirac tra�c light, fgreen = 0:9
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FIG. 14. Flow versus fgreen

22



FIG. 15. Snapshot of the case study at 7:00

, ,
FIG. 16. Space-time plot of a particular link (Beltline Rd., an east-west arterial in the northern

part of the area) from 7:00am to 7:05am (left), 7:30am to 7:35am (middle), and 8:00am to 8:05am

(right.)
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FIG. 17. Travel times versus departure time
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FIG. 18. Real time ratio
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